Click on the links below for publications related to each research area in the Huber Lab
Neuronal ceroid lipofuscinosis (Batten disease)
Extracellular matrix, matricellular proteins, and EGF-like repeat signalling
Calmodulin and calmodulin-binding proteins
Cytokinins in Dictyostelium
Cyclin-dependent kinases
Dictyostelium as a model organism
Neuronal ceroid lipofuscinosis (Batten disease)
Extracellular matrix, matricellular proteins, and EGF-like repeat signalling
Calmodulin and calmodulin-binding proteins
Cytokinins in Dictyostelium
Cyclin-dependent kinases
Dictyostelium as a model organism
Full List of Publications
Members of the Huber lab are bolded
++ Trent University graduate student
+ Trent University undergraduate student
# Equal contribution
++ Trent University graduate student
+ Trent University undergraduate student
# Equal contribution
Edited Collections
2022. Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. Frontiers in Cell and Developmental Biology. Role: Guest Associate Editor in Molecular and Cellular Pathology
https://www.frontiersin.org/research-topics/16964/dictyostelium-a-tractable-cell-and-developmental-model-in-biomedical-research
2021. Calmodulin Binding Proteins. International Journal of Molecular Sciences. Role: Guest Editor.
https://www.mdpi.com/journal/ijms/special_issues/Calmodulin_Proteins
2022. Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. Frontiers in Cell and Developmental Biology. Role: Guest Associate Editor in Molecular and Cellular Pathology
https://www.frontiersin.org/research-topics/16964/dictyostelium-a-tractable-cell-and-developmental-model-in-biomedical-research
2021. Calmodulin Binding Proteins. International Journal of Molecular Sciences. Role: Guest Editor.
https://www.mdpi.com/journal/ijms/special_issues/Calmodulin_Proteins
Book Chapters
3. Kim WD++, DiGiacinto AF+, Huber RJ. (2024). Assaying Lysosomal Enzyme Activity in Dictyostelium discoideum. In: Dictyostelium discoideum. Methods in Molecular Biology, vol 2814, Kimmel AR (Editor), Humana, New York, NY. pp. 55-79. ISBN: 978-1-0716-3893-4. https://doi.org/10.1007/978-1-0716-3894-1_4 (Invited)
https://link.springer.com/protocol/10.1007/978-1-0716-3894-1_4
2. Myre MA#, Huber RJ#, O’Day DH#. (2018). Functional Analysis of Proteins Involved in Neurodegeneration Using the Model Organism Dictyostelium: Alzheimer’s, Huntington’s and Batten Disease. Chapter 21, In: Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research, First Edition, Gerlai RT (Editor), Academic Press: Elsevier, San Diego, CA, pp. 491-518. ISBN: 9780128040782 (Invited)
https://www.elsevier.com/books/molecular-genetic-and-statistical-techniques-for-behavioral-and-neural-research/gerlai/978-0-12-804078-2
1. O'Day DH, Huber RJ, Suarez A. (2012). Calmodulin Signaling Inside-Out: Intracellular and Extracellular Calmodulin and its Interaction with a Matricellular, Cysteine-Rich Calmodulin-Binding Protein. Chapter 4, In: Calcium Signaling, Yamaguchi M (Editor), Nova Science Publishers Incorporated, Hauppauge, NY, pp. 105-118. ISBN: 9781613243138 (Invited)
https://books.google.ca/books/about/Calcium_Signaling.html?id=Y_iTuAAACAAJ&redir_esc=y
https://link.springer.com/protocol/10.1007/978-1-0716-3894-1_4
2. Myre MA#, Huber RJ#, O’Day DH#. (2018). Functional Analysis of Proteins Involved in Neurodegeneration Using the Model Organism Dictyostelium: Alzheimer’s, Huntington’s and Batten Disease. Chapter 21, In: Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research, First Edition, Gerlai RT (Editor), Academic Press: Elsevier, San Diego, CA, pp. 491-518. ISBN: 9780128040782 (Invited)
https://www.elsevier.com/books/molecular-genetic-and-statistical-techniques-for-behavioral-and-neural-research/gerlai/978-0-12-804078-2
1. O'Day DH, Huber RJ, Suarez A. (2012). Calmodulin Signaling Inside-Out: Intracellular and Extracellular Calmodulin and its Interaction with a Matricellular, Cysteine-Rich Calmodulin-Binding Protein. Chapter 4, In: Calcium Signaling, Yamaguchi M (Editor), Nova Science Publishers Incorporated, Hauppauge, NY, pp. 105-118. ISBN: 9781613243138 (Invited)
https://books.google.ca/books/about/Calcium_Signaling.html?id=Y_iTuAAACAAJ&redir_esc=y
Journal Articles
52. Huber RJ, Kim WD++. (2024). Trafficking of adhesion and aggregation-modulating proteins during the early stages of Dictyostelium development. Cellular Signalling 121, 111292. doi: 10.1016/j.cellsig.2024.111292
https://www.sciencedirect.com/science/article/pii/S0898656824002602?via%3Dihub
51. Aoki MM++, Kisiala AB, Farrow SC, Brunetti CR, Huber RJ, Emery RJN. (2024). Biochemical characterization of a unique cytokinin and nucleotide phosphoribohydrolase Lonely Guy protein from Dictyostelium discoideum. Biochemistry and Biophysics Reports 39, 101756. doi: 10.1016/j.bbrep.2024.101756
https://www.sciencedirect.com/science/article/pii/S2405580824001201
50. Huber RJ, Kim WD++, Wilson-Smillie MLDM++. (2024). Mechanisms regulating the intracellular trafficking and release of CLN5 and CTSD. Traffic 25, e12925. doi: 10.1111/tra.12925
https://onlinelibrary.wiley.com/doi/full/10.1111/tra.12925
49. Aoki MM++, Kisiala AB, Mathavarajah S, Schincaglia A, Treverton J+, Habib E, Dellaire G, Emery RJN, Brunetti CR, Huber RJ. (2024). From biosynthesis and beyond – Loss or overexpression of the cytokinin synthesis gene, iptA, alters cytokinesis and mitochondrial and amino acid metabolism in Dictyostelium discoideum. The FASEB Journal 38(1), e23366. doi: 10.1096/fj.202301936RR
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202301936RR
48. Huber RJ#, Gray J++#, Kim WD++. (2023). Loss of mfsd8 alters the secretome during Dictyostelium aggregation. European Journal of Cell Biology 102(4), 151361. doi: 10.1016/j.ejcb.2023.151361
www.sciencedirect.com/science/article/pii/S0171933523000766
47. Huber RJ. (2023). Recent insights into the networking of CLN genes and proteins in mammalian cells. Journal of Neurochemistry 165(5), 643-659. doi: 10.1111/jnc.15822
https://onlinelibrary.wiley.com/doi/10.1111/jnc.15822
46. Remtulla AAN++, Huber RJ. (2023). The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. European Journal of Cell Biology 102(2), 151305. In Special Issue: Cell Biology's Leading Edge - Part 2. doi: 10.1016/j.ejcb.2023.151305
https://www.sciencedirect.com/science/article/pii/S0171933523000201
45. Kim WD++, Huber RJ. (2022). An altered transcriptome underlies cln5-deficiency phenotypes in Dictyostelium discoideum. Frontiers in Genetics 13, 1045738. In Research Topic: Neuronal Ceroid Lipofuscinosis: Molecular Genetics & Epigenetics. doi: 10.3389/fgene.2022.1045738
https://www.frontiersin.org/articles/10.3389/fgene.2022.1045738/full
44. Yap SQ++, Kim WD++, Huber RJ. (2022). Mfsd8 modulates growth and the early stages of multicellular development in Dictyostelium discoideum. Frontiers in Cell and Developmental Biology 10, 930235. In Research Topic: Ion Transporters and Channels in Cellular Pathophysiology. doi: 10.3389/fcell.2022.930235
https://www.frontiersin.org/articles/10.3389/fcell.2022.930235/full
43. Huber RJ, Williams RSB, Müller-Taubenberger A. (2022). Editorial: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. Frontiers in Cell and Developmental Biology 10, 909619. In Research Topic: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. doi: 10.3389/fcell.2022.909619
https://www.frontiersin.org/articles/10.3389/fcell.2022.909619/full
42. O’Day DH, Huber RJ. (2022). Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neuroscience 23, 10. doi: 10.1186/s12868-022-00695-y
https://bmcneurosci.biomedcentral.com/articles/10.1186/s12868-022-00695-y
41. Kim WD++#, Mathavarajah S#, Huber RJ#. (2022). The cellular and developmental roles of cullins, neddylation, and the COP9 signalosome in Dictyostelium discoideum. Frontiers in Physiology 13, 827435. In Research Topic: E3 Ubiquitin Ligases: From Structure to Physiology to Therapeutics, Volume II. doi: 10.3389/fphys.2022.827435
https://www.frontiersin.org/articles/10.3389/fphys.2022.827435/full
40. Kim WD++, Wilson-Smillie MLDM++, Thanabalasingam A++, Lefrancois S, Cotman SL, Huber RJ. (2022). Autophagy in the neuronal ceroid lipofuscinoses (Batten disease). Frontiers in Cell and Developmental Biology 10, 812728. In Research Topic: Defective Macroautophagy in Organelle Turnover: From Basic Mechanisms to Human Disease. doi: 10.3389/fcell.2022.812728. Invited.
https://www.frontiersin.org/articles/10.3389/fcell.2022.812728/full
39. Huber RJ. (2021). Altered protein secretion in Batten disease. Disease Models & Mechanisms 14(12), dmm049152. In Collection: Model systems in human genetics research, Rare Disease Translational Research Using Model Systems. doi: 10.1242/dmm.049152. Invited.
https://journals.biologists.com/dmm/article/14/12/dmm049152/273626/Altered-protein-secretion-in-Batten-disease
38. McLaren MD++#, Mathavarajah S+#, Kim WD++, Yap SQ++, Huber RJ. (2021). Aberrant autophagy impacts growth and multicellular development in a Dictyostelium knockout model of CLN5 disease. Frontiers in Cell and Developmental Biology 9, 657406. In Research Topic: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. doi: 10.3389/fcell.2021.657406.
https://www.frontiersin.org/articles/10.3389/fcell.2021.657406/full
37. Yap SQ++#, Mathavarajah S#, Huber RJ. (2021). The converging roles of Batten disease proteins in neurodegeneration and cancer. iScience 24(4), 102337. doi:10.1016/j.isci.2021.102337
https://www.sciencedirect.com/science/article/pii/S2589004221003059
36. Huber RJ, Kim WD++, Mathavarajah S. (2021). Inhibiting neddylation with MLN4924 suppresses growth and delays multicellular development in Dictyostelium discoideum. Biomolecules 11(3), 482. In Special Issue: Looking Back and Ahead: Emerging Concepts in Ubiquitin and UBLs. doi:10.3390/biom11030482
https://www.mdpi.com/2218-273X/11/3/482
35. Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. (2021). Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. BioEssays 43(4), e2000156. doi:10.1002/bies.202000156
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.202000156?af=R
34. Kim WD++#, Yap SQ++#, Huber RJ#. (2021). A proteomics analysis of calmodulin-binding proteins in Dictyostelium discoideum during the transition from unicellular growth to multicellular development. International Journal of Molecular Sciences 22(4), 1722. In Special Issue: Calmodulin Binding Proteins. doi:10.3390/ijms22041722
https://www.mdpi.com/1422-0067/22/4/1722
33. Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. (2020). The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochimica et Biophysica Acta Molecular Basis of Disease 1866(9), 165614. In Special Issue: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease). doi:10.1016/j.bbadis.2019.165614
https://www.sciencedirect.com/science/article/abs/pii/S0925443919303400?via%3Dihub
32. Aoki MM++, Emery RJN, Anjard C, Brunetti CR, Huber RJ. (2020). Cytokinins in Dictyostelia – A unique model for studying the functions of signaling agents from species to kingdoms. Frontiers in Cell and Developmental Biology 8, 511. doi:10.3389/fcell.2020.00511
https://www.frontiersin.org/articles/10.3389/fcell.2020.00511/abstract
31. Huber RJ, Mathavarajah S+, Yap SQ++. (2020). Mfsd8 localizes to endocytic compartments and influences the secretion of Cln5 and cathepsin D in Dictyostelium. Cellular Signalling 70, 109572. doi:10.1016/j.cellsig.2020.109572
https://www.sciencedirect.com/science/article/abs/pii/S0898656820300498?via%3Dihub
30. Huber RJ. (2020). Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. Journal of Biomedical Science 27(1), 64. doi:10.1186/s12929-020-00653-y
https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-020-00653-y
29. O’Day DH#, Mathavarajah S+#, Myre MA#, Huber RJ#. (2020). Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biological Reviews of the Cambridge Philosophical Society 95(2), 472-490. doi:10.1111/brv.12573
https://onlinelibrary.wiley.com/doi/full/10.1111/brv.12573
28. Aoki MM++, Kisiala AB, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN. (2019). Cytokinin detection during the Dictyostelium discoideum life cycle: Profiles are dynamic and affect cell growth and spore germination. Biomolecules 9(11), 702. doi:10.3390/biom9110702
https://www.mdpi.com/2218-273X/9/11/702
27. Huber RJ, Mathavarajah S+. (2019). Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cellular Signalling 58, 79-90. doi:10.1016/j.cellsig.2019.02.004 https://www.sciencedirect.com/science/article/pii/S0898656819300336?via%3Dihub
26. McLaren MD++, Mathavarajah S+, Huber RJ. (2019). Recent insights into NCL protein function using the model organism Dictyostelium discoideum. Cells 8(2), 115. doi:10.3390/cells8020115
https://www.mdpi.com/2073-4409/8/2/115
25. Mathavarajah S+, McLaren MD++, Huber RJ. (2018). Cln3 function is linked to osmoregulation in a Dictyostelium model of Batten disease. Biochimica et Biophysica Acta Molecular Basis of Disease 1864, 3559-3573. doi:10.1016/j.bbadis.2018.08.013
https://www.sciencedirect.com/science/article/abs/pii/S0925443918302989
24. Mathavarajah S+, O’Day DH, Huber RJ. (2018). Neuronal ceroid lipofuscinoses: Connecting calcium signalling through calmodulin. Cells 7(11), 188. doi:10.3390/cells7110188
https://www.mdpi.com/2073-4409/7/11/188
23. Huber RJ, Mathavarajah S+. (2018). Secretion and function of Cln5 during the early stages of Dictyostelium development. Biochimica et Biophysica Acta Molecular Cell Research 1865(10), 1437-1450. doi:10.1016/j.bbamcr.2018.07.017
https://www.sciencedirect.com/science/article/pii/S0167488918302039?via%3Dihub
22. Huber RJ, Mathavarajah S+. (2018). Cln5 is secreted and functions as a glycoside hydrolase in Dictyostelium. Cellular Signalling 42, 236-248. doi:10.1016/j.cellsig.2017.11.001
https://www.sciencedirect.com/science/article/pii/S0898656817302887
21. Mathavarajah S+, Flores A+, Huber RJ. (2017). Dictyostelium discoideum: A model system for cell and developmental biology. Current Protocols Essential Laboratory Techniques 15, 14.1.1-14.1.19. doi:10.1002/cpet.15
http://onlinelibrary.wiley.com/doi/10.1002/cpet.15/full
20. Huber RJ, Myre MA, Cotman SL. (2017). Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis. Cell Adhesion & Migration 11(4), 399-418. doi:10.1080/19336918.2016.1236179
http://www.tandfonline.com/doi/full/10.1080/19336918.2016.1236179
19. Huber RJ. (2017). Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cellular Signalling 35, 61-72. doi:10.1016/j.cellsig.2017.03.022
http://www.sciencedirect.com/science/article/pii/S0898656817300918
18. Huber RJ, O’Day DH. (2017). Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: A critical review. Biochimica et Biophysica Acta General Subjects 186(1), 2971-2980. doi:10.1016/j.bbagen.2016.09
http://www.sciencedirect.com/science/article/pii/S0304416516303695
17. Huber RJ. (2016). Using Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis. Journal of Biomedical Science 23(1), 83. doi:10.1186/s12929-016-0301-0
https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-016-0301-0
16. Huber RJ, O’Day DH. (2015). Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum. Proteomics 15(19), 3315-3319. doi:10.1002/pmic.201500143
http://onlinelibrary.wiley.com/doi/10.1002/pmic.201500143/abstract;jsessionid=D9A617375A23B78B987DA28AA7A4F3DA.f02t01
15. Huber RJ, Myre MA, Cotman SL. (2014). Loss of Cln3 function in the social amoeba Dictyostelium discoideum causes pleiotropic effects that are rescued by human CLN3. PLoS One 9(10), e110544. doi:10.1371/journal.pone.0110544
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110544
14. Kovacs-Bogdan E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A, Huber RJ, Myre MA, Blower MD, Mootha VK. (2014). Reconstitution of the mitochondrial calcium uniporter in yeast. Proceedings of the National Academy of Sciences of the United States of America 111(24), 8985-8990. doi:10.1073/pnas.1400514111
http://www.pnas.org/content/111/24/8985.long
13. Huber RJ. (2014). The cyclin-dependent kinase family in the social amoebozoan Dictyostelium discoideum. Cellular and Molecular Life Sciences 71(4), 629-639. doi:10.1007/s00018-013-1449-3
http://link.springer.com/article/10.1007%2Fs00018-013-1449-3
12. O’Day DH, Huber RJ. (2013). Matricellular signal transduction involving calmodulin in the social amoebozoan Dictyostelium. Genes 4(1), 33-45. doi:10.3390/genes4010033
http://www.mdpi.com/2073-4425/4/1/33
11. Huber RJ, Catalano A, O’Day DH. (2013). Cyclin-dependent kinase 5 is a calmodulin-binding protein that associates with puromycin-sensitive aminopeptidase in the nucleus of Dictyostelium. Biochimica et Biophysica Acta Molecular Cell Research 1833(1), 11-20. doi:10.1016/j.bbamcr.2012.10.005
http://www.sciencedirect.com/science/article/pii/S016748891200287X
10. Huber RJ, O’Day DH. (2012). A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum. Cellular and Molecular Life Sciences 69(23), 3989–3997. doi:10.1007/s00018-012-1068-4
http://link.springer.com/article/10.1007%2Fs00018-012-1068-4
9. O’Day DH, Huber RJ, Suarez A. (2012). Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum. Biochemical and Biophysical Research Communications 425(4), 750-754. doi:10.1016/j.bbrc.2012.07.147
http://www.sciencedirect.com/science/article/pii/S0006291X12014611
8. Huber RJ, O’Day DH. (2012). EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins. Cellular Signalling 24(9), 1770–1780. doi:10.1016/j.cellsig.2012.05.004
http://www.sciencedirect.com/science/article/pii/S0898656812001416
7. Huber, RJ, Suarez A, O’Day DH. (2012). CyrA, a matricellular protein that modulates cell motility in Dictyostelium discoideum. Matrix Biology 31(4), 271-280. doi:10.1016/j.matbio.2012.02.003
http://www.sciencedirect.com/science/article/pii/S0945053X12000467
6. Huber RJ, O’Day DH. (2012). The cyclin-dependent kinase inhibitor roscovitine inhibits kinase activity, cell proliferation, multicellular development, and Cdk5 nuclear translocation in Dictyostelium discoideum. Journal of Cellular Biochemistry 113(3), 868-876. doi:10.1002/jcb.23417
http://onlinelibrary.wiley.com/doi/10.1002/jcb.23417/abstract
5. Nikolaeva I+, Huber RJ, O’Day DH. (2012). EGF-like peptide of Dictyostelium discoideum is not a chemoattractant but it does restore folate-mediated chemotaxis in the presence of signal transduction inhibitors. Peptides 34(1), 145-149. doi:10.1016/j.peptides.2011.12.014
http://www.sciencedirect.com/science/article/pii/S0196978111005250
4. Huber RJ, O’Day DH. (2011). Nucleocytoplasmic transfer of cyclin dependent kinase 5 and its binding to puromycin-sensitive aminopeptidase in Dictyostelium discoideum. Histochemistry and Cell Biology 136(2), 177-189. doi:10.1007/s00418-011-0839-6
http://link.springer.com/article/10.1007%2Fs00418-011-0839-6
3. Suarez A, Huber RJ, Myre MA, O’Day DH. (2011). An extracellular matrix, calmodulin-binding protein from Dictyostelium with EGF-like repeats that enhance cell motility. Cellular Signalling 23(7), 1197-1206. doi:10.1016/j.cellsig.2011.03.008
http://www.sciencedirect.com/science/article/pii/S0898656811000830
2. Huber R, O’Day DH. (2011). EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling. Cellular Signalling 23(4), 731-738. doi:10.1016/j.cellsig.2010.12.007
http://www.sciencedirect.com/science/article/pii/S0898656810003682
1. Huber R, O’Day DH. (2009). An EGF-like peptide sequence from Dictyostelium enhances cell motility and chemotaxis. Biochemical and Biophysical Research Communications 379(2), 470–475. doi:10.1016/j.bbrc.2008.12.081
http://www.sciencedirect.com/science/article/pii/S0006291X08024984
https://www.sciencedirect.com/science/article/pii/S0898656824002602?via%3Dihub
51. Aoki MM++, Kisiala AB, Farrow SC, Brunetti CR, Huber RJ, Emery RJN. (2024). Biochemical characterization of a unique cytokinin and nucleotide phosphoribohydrolase Lonely Guy protein from Dictyostelium discoideum. Biochemistry and Biophysics Reports 39, 101756. doi: 10.1016/j.bbrep.2024.101756
https://www.sciencedirect.com/science/article/pii/S2405580824001201
50. Huber RJ, Kim WD++, Wilson-Smillie MLDM++. (2024). Mechanisms regulating the intracellular trafficking and release of CLN5 and CTSD. Traffic 25, e12925. doi: 10.1111/tra.12925
https://onlinelibrary.wiley.com/doi/full/10.1111/tra.12925
49. Aoki MM++, Kisiala AB, Mathavarajah S, Schincaglia A, Treverton J+, Habib E, Dellaire G, Emery RJN, Brunetti CR, Huber RJ. (2024). From biosynthesis and beyond – Loss or overexpression of the cytokinin synthesis gene, iptA, alters cytokinesis and mitochondrial and amino acid metabolism in Dictyostelium discoideum. The FASEB Journal 38(1), e23366. doi: 10.1096/fj.202301936RR
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202301936RR
48. Huber RJ#, Gray J++#, Kim WD++. (2023). Loss of mfsd8 alters the secretome during Dictyostelium aggregation. European Journal of Cell Biology 102(4), 151361. doi: 10.1016/j.ejcb.2023.151361
www.sciencedirect.com/science/article/pii/S0171933523000766
47. Huber RJ. (2023). Recent insights into the networking of CLN genes and proteins in mammalian cells. Journal of Neurochemistry 165(5), 643-659. doi: 10.1111/jnc.15822
https://onlinelibrary.wiley.com/doi/10.1111/jnc.15822
46. Remtulla AAN++, Huber RJ. (2023). The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. European Journal of Cell Biology 102(2), 151305. In Special Issue: Cell Biology's Leading Edge - Part 2. doi: 10.1016/j.ejcb.2023.151305
https://www.sciencedirect.com/science/article/pii/S0171933523000201
45. Kim WD++, Huber RJ. (2022). An altered transcriptome underlies cln5-deficiency phenotypes in Dictyostelium discoideum. Frontiers in Genetics 13, 1045738. In Research Topic: Neuronal Ceroid Lipofuscinosis: Molecular Genetics & Epigenetics. doi: 10.3389/fgene.2022.1045738
https://www.frontiersin.org/articles/10.3389/fgene.2022.1045738/full
44. Yap SQ++, Kim WD++, Huber RJ. (2022). Mfsd8 modulates growth and the early stages of multicellular development in Dictyostelium discoideum. Frontiers in Cell and Developmental Biology 10, 930235. In Research Topic: Ion Transporters and Channels in Cellular Pathophysiology. doi: 10.3389/fcell.2022.930235
https://www.frontiersin.org/articles/10.3389/fcell.2022.930235/full
43. Huber RJ, Williams RSB, Müller-Taubenberger A. (2022). Editorial: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. Frontiers in Cell and Developmental Biology 10, 909619. In Research Topic: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. doi: 10.3389/fcell.2022.909619
https://www.frontiersin.org/articles/10.3389/fcell.2022.909619/full
42. O’Day DH, Huber RJ. (2022). Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neuroscience 23, 10. doi: 10.1186/s12868-022-00695-y
https://bmcneurosci.biomedcentral.com/articles/10.1186/s12868-022-00695-y
41. Kim WD++#, Mathavarajah S#, Huber RJ#. (2022). The cellular and developmental roles of cullins, neddylation, and the COP9 signalosome in Dictyostelium discoideum. Frontiers in Physiology 13, 827435. In Research Topic: E3 Ubiquitin Ligases: From Structure to Physiology to Therapeutics, Volume II. doi: 10.3389/fphys.2022.827435
https://www.frontiersin.org/articles/10.3389/fphys.2022.827435/full
40. Kim WD++, Wilson-Smillie MLDM++, Thanabalasingam A++, Lefrancois S, Cotman SL, Huber RJ. (2022). Autophagy in the neuronal ceroid lipofuscinoses (Batten disease). Frontiers in Cell and Developmental Biology 10, 812728. In Research Topic: Defective Macroautophagy in Organelle Turnover: From Basic Mechanisms to Human Disease. doi: 10.3389/fcell.2022.812728. Invited.
https://www.frontiersin.org/articles/10.3389/fcell.2022.812728/full
39. Huber RJ. (2021). Altered protein secretion in Batten disease. Disease Models & Mechanisms 14(12), dmm049152. In Collection: Model systems in human genetics research, Rare Disease Translational Research Using Model Systems. doi: 10.1242/dmm.049152. Invited.
https://journals.biologists.com/dmm/article/14/12/dmm049152/273626/Altered-protein-secretion-in-Batten-disease
38. McLaren MD++#, Mathavarajah S+#, Kim WD++, Yap SQ++, Huber RJ. (2021). Aberrant autophagy impacts growth and multicellular development in a Dictyostelium knockout model of CLN5 disease. Frontiers in Cell and Developmental Biology 9, 657406. In Research Topic: Dictyostelium: A Tractable Cell and Developmental Model in Biomedical Research. doi: 10.3389/fcell.2021.657406.
https://www.frontiersin.org/articles/10.3389/fcell.2021.657406/full
37. Yap SQ++#, Mathavarajah S#, Huber RJ. (2021). The converging roles of Batten disease proteins in neurodegeneration and cancer. iScience 24(4), 102337. doi:10.1016/j.isci.2021.102337
https://www.sciencedirect.com/science/article/pii/S2589004221003059
36. Huber RJ, Kim WD++, Mathavarajah S. (2021). Inhibiting neddylation with MLN4924 suppresses growth and delays multicellular development in Dictyostelium discoideum. Biomolecules 11(3), 482. In Special Issue: Looking Back and Ahead: Emerging Concepts in Ubiquitin and UBLs. doi:10.3390/biom11030482
https://www.mdpi.com/2218-273X/11/3/482
35. Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. (2021). Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. BioEssays 43(4), e2000156. doi:10.1002/bies.202000156
https://onlinelibrary.wiley.com/doi/abs/10.1002/bies.202000156?af=R
34. Kim WD++#, Yap SQ++#, Huber RJ#. (2021). A proteomics analysis of calmodulin-binding proteins in Dictyostelium discoideum during the transition from unicellular growth to multicellular development. International Journal of Molecular Sciences 22(4), 1722. In Special Issue: Calmodulin Binding Proteins. doi:10.3390/ijms22041722
https://www.mdpi.com/1422-0067/22/4/1722
33. Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. (2020). The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochimica et Biophysica Acta Molecular Basis of Disease 1866(9), 165614. In Special Issue: Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease). doi:10.1016/j.bbadis.2019.165614
https://www.sciencedirect.com/science/article/abs/pii/S0925443919303400?via%3Dihub
32. Aoki MM++, Emery RJN, Anjard C, Brunetti CR, Huber RJ. (2020). Cytokinins in Dictyostelia – A unique model for studying the functions of signaling agents from species to kingdoms. Frontiers in Cell and Developmental Biology 8, 511. doi:10.3389/fcell.2020.00511
https://www.frontiersin.org/articles/10.3389/fcell.2020.00511/abstract
31. Huber RJ, Mathavarajah S+, Yap SQ++. (2020). Mfsd8 localizes to endocytic compartments and influences the secretion of Cln5 and cathepsin D in Dictyostelium. Cellular Signalling 70, 109572. doi:10.1016/j.cellsig.2020.109572
https://www.sciencedirect.com/science/article/abs/pii/S0898656820300498?via%3Dihub
30. Huber RJ. (2020). Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. Journal of Biomedical Science 27(1), 64. doi:10.1186/s12929-020-00653-y
https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-020-00653-y
29. O’Day DH#, Mathavarajah S+#, Myre MA#, Huber RJ#. (2020). Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biological Reviews of the Cambridge Philosophical Society 95(2), 472-490. doi:10.1111/brv.12573
https://onlinelibrary.wiley.com/doi/full/10.1111/brv.12573
28. Aoki MM++, Kisiala AB, Li S, Stock NL, Brunetti CR, Huber RJ, Emery RJN. (2019). Cytokinin detection during the Dictyostelium discoideum life cycle: Profiles are dynamic and affect cell growth and spore germination. Biomolecules 9(11), 702. doi:10.3390/biom9110702
https://www.mdpi.com/2218-273X/9/11/702
27. Huber RJ, Mathavarajah S+. (2019). Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cellular Signalling 58, 79-90. doi:10.1016/j.cellsig.2019.02.004 https://www.sciencedirect.com/science/article/pii/S0898656819300336?via%3Dihub
26. McLaren MD++, Mathavarajah S+, Huber RJ. (2019). Recent insights into NCL protein function using the model organism Dictyostelium discoideum. Cells 8(2), 115. doi:10.3390/cells8020115
https://www.mdpi.com/2073-4409/8/2/115
25. Mathavarajah S+, McLaren MD++, Huber RJ. (2018). Cln3 function is linked to osmoregulation in a Dictyostelium model of Batten disease. Biochimica et Biophysica Acta Molecular Basis of Disease 1864, 3559-3573. doi:10.1016/j.bbadis.2018.08.013
https://www.sciencedirect.com/science/article/abs/pii/S0925443918302989
24. Mathavarajah S+, O’Day DH, Huber RJ. (2018). Neuronal ceroid lipofuscinoses: Connecting calcium signalling through calmodulin. Cells 7(11), 188. doi:10.3390/cells7110188
https://www.mdpi.com/2073-4409/7/11/188
23. Huber RJ, Mathavarajah S+. (2018). Secretion and function of Cln5 during the early stages of Dictyostelium development. Biochimica et Biophysica Acta Molecular Cell Research 1865(10), 1437-1450. doi:10.1016/j.bbamcr.2018.07.017
https://www.sciencedirect.com/science/article/pii/S0167488918302039?via%3Dihub
22. Huber RJ, Mathavarajah S+. (2018). Cln5 is secreted and functions as a glycoside hydrolase in Dictyostelium. Cellular Signalling 42, 236-248. doi:10.1016/j.cellsig.2017.11.001
https://www.sciencedirect.com/science/article/pii/S0898656817302887
21. Mathavarajah S+, Flores A+, Huber RJ. (2017). Dictyostelium discoideum: A model system for cell and developmental biology. Current Protocols Essential Laboratory Techniques 15, 14.1.1-14.1.19. doi:10.1002/cpet.15
http://onlinelibrary.wiley.com/doi/10.1002/cpet.15/full
20. Huber RJ, Myre MA, Cotman SL. (2017). Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis. Cell Adhesion & Migration 11(4), 399-418. doi:10.1080/19336918.2016.1236179
http://www.tandfonline.com/doi/full/10.1080/19336918.2016.1236179
19. Huber RJ. (2017). Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cellular Signalling 35, 61-72. doi:10.1016/j.cellsig.2017.03.022
http://www.sciencedirect.com/science/article/pii/S0898656817300918
18. Huber RJ, O’Day DH. (2017). Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: A critical review. Biochimica et Biophysica Acta General Subjects 186(1), 2971-2980. doi:10.1016/j.bbagen.2016.09
http://www.sciencedirect.com/science/article/pii/S0304416516303695
17. Huber RJ. (2016). Using Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis. Journal of Biomedical Science 23(1), 83. doi:10.1186/s12929-016-0301-0
https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-016-0301-0
16. Huber RJ, O’Day DH. (2015). Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum. Proteomics 15(19), 3315-3319. doi:10.1002/pmic.201500143
http://onlinelibrary.wiley.com/doi/10.1002/pmic.201500143/abstract;jsessionid=D9A617375A23B78B987DA28AA7A4F3DA.f02t01
15. Huber RJ, Myre MA, Cotman SL. (2014). Loss of Cln3 function in the social amoeba Dictyostelium discoideum causes pleiotropic effects that are rescued by human CLN3. PLoS One 9(10), e110544. doi:10.1371/journal.pone.0110544
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110544
14. Kovacs-Bogdan E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A, Huber RJ, Myre MA, Blower MD, Mootha VK. (2014). Reconstitution of the mitochondrial calcium uniporter in yeast. Proceedings of the National Academy of Sciences of the United States of America 111(24), 8985-8990. doi:10.1073/pnas.1400514111
http://www.pnas.org/content/111/24/8985.long
13. Huber RJ. (2014). The cyclin-dependent kinase family in the social amoebozoan Dictyostelium discoideum. Cellular and Molecular Life Sciences 71(4), 629-639. doi:10.1007/s00018-013-1449-3
http://link.springer.com/article/10.1007%2Fs00018-013-1449-3
12. O’Day DH, Huber RJ. (2013). Matricellular signal transduction involving calmodulin in the social amoebozoan Dictyostelium. Genes 4(1), 33-45. doi:10.3390/genes4010033
http://www.mdpi.com/2073-4425/4/1/33
11. Huber RJ, Catalano A, O’Day DH. (2013). Cyclin-dependent kinase 5 is a calmodulin-binding protein that associates with puromycin-sensitive aminopeptidase in the nucleus of Dictyostelium. Biochimica et Biophysica Acta Molecular Cell Research 1833(1), 11-20. doi:10.1016/j.bbamcr.2012.10.005
http://www.sciencedirect.com/science/article/pii/S016748891200287X
10. Huber RJ, O’Day DH. (2012). A matricellular protein and EGF-like repeat signalling in the social amoebozoan Dictyostelium discoideum. Cellular and Molecular Life Sciences 69(23), 3989–3997. doi:10.1007/s00018-012-1068-4
http://link.springer.com/article/10.1007%2Fs00018-012-1068-4
9. O’Day DH, Huber RJ, Suarez A. (2012). Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum. Biochemical and Biophysical Research Communications 425(4), 750-754. doi:10.1016/j.bbrc.2012.07.147
http://www.sciencedirect.com/science/article/pii/S0006291X12014611
8. Huber RJ, O’Day DH. (2012). EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins. Cellular Signalling 24(9), 1770–1780. doi:10.1016/j.cellsig.2012.05.004
http://www.sciencedirect.com/science/article/pii/S0898656812001416
7. Huber, RJ, Suarez A, O’Day DH. (2012). CyrA, a matricellular protein that modulates cell motility in Dictyostelium discoideum. Matrix Biology 31(4), 271-280. doi:10.1016/j.matbio.2012.02.003
http://www.sciencedirect.com/science/article/pii/S0945053X12000467
6. Huber RJ, O’Day DH. (2012). The cyclin-dependent kinase inhibitor roscovitine inhibits kinase activity, cell proliferation, multicellular development, and Cdk5 nuclear translocation in Dictyostelium discoideum. Journal of Cellular Biochemistry 113(3), 868-876. doi:10.1002/jcb.23417
http://onlinelibrary.wiley.com/doi/10.1002/jcb.23417/abstract
5. Nikolaeva I+, Huber RJ, O’Day DH. (2012). EGF-like peptide of Dictyostelium discoideum is not a chemoattractant but it does restore folate-mediated chemotaxis in the presence of signal transduction inhibitors. Peptides 34(1), 145-149. doi:10.1016/j.peptides.2011.12.014
http://www.sciencedirect.com/science/article/pii/S0196978111005250
4. Huber RJ, O’Day DH. (2011). Nucleocytoplasmic transfer of cyclin dependent kinase 5 and its binding to puromycin-sensitive aminopeptidase in Dictyostelium discoideum. Histochemistry and Cell Biology 136(2), 177-189. doi:10.1007/s00418-011-0839-6
http://link.springer.com/article/10.1007%2Fs00418-011-0839-6
3. Suarez A, Huber RJ, Myre MA, O’Day DH. (2011). An extracellular matrix, calmodulin-binding protein from Dictyostelium with EGF-like repeats that enhance cell motility. Cellular Signalling 23(7), 1197-1206. doi:10.1016/j.cellsig.2011.03.008
http://www.sciencedirect.com/science/article/pii/S0898656811000830
2. Huber R, O’Day DH. (2011). EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling. Cellular Signalling 23(4), 731-738. doi:10.1016/j.cellsig.2010.12.007
http://www.sciencedirect.com/science/article/pii/S0898656810003682
1. Huber R, O’Day DH. (2009). An EGF-like peptide sequence from Dictyostelium enhances cell motility and chemotaxis. Biochemical and Biophysical Research Communications 379(2), 470–475. doi:10.1016/j.bbrc.2008.12.081
http://www.sciencedirect.com/science/article/pii/S0006291X08024984